ALPO Comet News

A Publication of the Comets Section of the Association of Lunar and Planetary Observers





alpo-astronomy.org comets@alpo-astronomy.org



# **Table of Contents**

| ON THE FRONT COVER:                                      | 2  |
|----------------------------------------------------------|----|
| SUMMARY                                                  | 3  |
| REQUEST FOR OBSERVATIONS                                 | 3  |
| PHOTOMETRIC CORRECTIONS TO MAGNITUDE MEASUREMENTS        | 4  |
| ACKNOWLEDGEMENTS                                         | 4  |
| COMETS CALENDAR                                          | 5  |
| RECENT MAGNITUDES CONTRIBUTED TO THE ALPO COMETS SECTION | 6  |
| NEW DISCOVERIES, RECOVERIES AND OTHER COMETS NEWS        | 8  |
| COMETS BRIGHTER THAN MAGNITUDE 6                         | 9  |
| C/2022 E3 (ZTF)                                          | 9  |
| COMETS BETWEEN MAGNITUDE 6 AND 10                        | 13 |
| C/2017 K2 (PANSTARRS)                                    | 13 |
| C/2020 V2 (ZTF)                                          | 15 |
| C/2022 A2 (PANSTARRS)                                    | 17 |
| C/2022 U2 (ATLAS)                                        | 19 |
| 96P/Machholz                                             | 21 |
| COMETS BETWEEN MAGNITUDE 10 AND 12                       | 23 |
| 29P/Schwassmann-Wachmann                                 | 23 |
| 81P/WILD                                                 | 25 |
| C/2019 L3 (ATLAS)                                        | 26 |
| C/2019 U5 (PANSTARRS)                                    | 27 |
| C/2020 K1 (PANSTARRS)                                    | 28 |

# **On the Front Cover:**

Two views of C/2022 E3 (ZTF) at its best.

On the right, Dan Bartlett (June Lake, CA) imaged the comet on 2023 January 27 with a Samyang 135mm f/2.8 lens and ZWO ASI294mcP camera. The exposure consists on 69x120s exposures and covers 8.3x45 degrees of sky.

For those of us without digital eyes, the sketch on the left by Michel Deconinck perfectly portrays the comet's naked eye appearance among the stars of the northern polar sky. Michel's watercolor was made on February 1 from his backyard in Verdon, France.

The monthly ALPO Comet News PDF can be found on the ALPO Comets Section website (<u>http://www.alpo-astronomy.org/cometblog/</u>). A shorter version of this report is posted on a dedicated Cloudy Nights forum (<u>https://www.cloudynights.com/topic/862336-alpo-comet-news-for-fdebruary-2023/</u>) All are encouraged to join the discussion over at Cloudy Nights. The ALPO Comets Section welcomes all comet related articles, observations, images, drawings, magnitude estimates, or spectra. One does not have to be a member of ALPO to submit material, though membership is appreciated.

Please send your observations to the Comets Section at  $< \underline{comets@alpo-astronomy.org} >$ , Coordinator Carl Hergenrother  $< \underline{carl.hergenrother@alpo-astronomy.org} >$  and/or Acting Assistant Coordinator Michel Deconinck  $< \underline{michel.deconinck@alpo-astronomy.org} >$ .

To learn more about the ALPO, please visit us @ http://www.alpo-astronomy.org.

# **Summary**

C/2022 E3 (ZTF) is at its best as February starts. Several observers have made naked eye detections during the last week of January. At between magnitude 4.6 and 5.1, ZTF is a very easy binocular object but will require dark skies to be seen with the naked eye. With a close approach to Earth at 0.29 au on February 1, the comet should fade rather rapidly in February and may be as faint as magnitude 8 by the end of the month. Though fading, its southern motion will allow southern mid-latitude observers a chance to see it early in the month.

C/2022 E3 (ZTF) is not the only reasonably bright comet. In the southern hemisphere, C/2017 K2 (PANSTARRS) is at 8<sup>th</sup> magnitude. Northern observers will also be able to follow 9<sup>th</sup> magnitude comets C/2020 V2 (ZTF), C/2022 A2 (PANSTARRS), and C/2022 U2 (ATLAS). While C/2020 V2 (ZTF) and C/2022 A2 (PANSTARRS) are limited to northern observers, C/2022 U2 (ATLAS) will be visible from the southern hemisphere as well.

Last month's brightest comet wasn't C/2022 E3 (ZTF) but rather 96P/Machholz at 0<sup>th</sup> to 2<sup>nd</sup> magnitude. Unfortunately, it was only visible through the eyes of the SOHO and STEREO-A spacecraft as it was only a few degrees from the Sun at its brightest in late January. Eagle eyed observers with a clear horizon may spot 96P later in the month low in the morning sky though it should have faded to 8-10<sup>th</sup> magnitude by then.

Last month the ALPO Comets Section received 83 magnitude estimates and 122 images/sketches of comets C/2022 U2 (ATLAS), C/2022 P1 (NEOWISE), C/2022 E3 (ZTF), C/2022 A2 (PANSTARRS), C/2021 Y1 (ATLAS), C/2021 X1 (Maury-Attard), C/2021 QM45 (PANSTARRS), C/2020 V2 (ZTF), C/2020 S4 (PANSTARRS), C/2019 U5 (PANSTARRS), C/2019 L3 (ATLAS), C/2017 K2 (PANSTARRS), 96P/Machholz, and 29P/Schwassmann-Wachmann. A big thanks to our recent contributors: Michael Amato, Dan Bartlett, Michel Besson, Todd Bossaller, Denis Buczynski, J. J. Gonzalez, Jose Guilherme de Souza Aguiar, Christian Harder, Carl Hergenrother, Eliot Herman, Rik Hill, Michael Jäger, Martin Mobberley, Charles Morris, Mike Olason, Phill Parslow, Ludovic Perbet, Uwe Pilz, Allan Rahill, Efrain Morales Rivera, Gregg Ruppel, Anaël Semiat, Richard Schmude, Jr., Chris Schur, Greg T. Shanos, and Chris Wyatt.

# **Request for Observations**

As always, the Comet Section is happy to receive all comet observations, whether textual descriptions, images, drawings, magnitude estimates, or spectra. Please send your observations via email to the Comets Section <

comets @ alpo-astronomy . org >, Comets Section Coordinator Carl Hergenrother < carl.hergenrother @ alpo-astronomy . org > and/or Comets Section Acting Assistant Coordinator Michel Deconinck < michel.deconinck @ alpo-astronomy . org >.

# **Photometric Corrections to Magnitude Measurements**

We try to include up-to-date lightcurves for the comets discussed in these reports as well as applying aperture and personal corrections to the visual observations and personal just corrections to digital observations. All magnitude estimates are affected by many factors including instrumental (aperture, focal length, magnification, type of optics), environmental (sky brightness due to moonlight, light pollution, twilight, aurora activity, zodiacal light, etc.), cometary (degree of condensation, coma color, strength and type of gas emission lines, coma-tail interface) and personal (sensitivity to different wavelengths, personal technique, observational biases). The first correction used here corrects for differences in aperture [Charles S. Morris, On Aperture Corrections for Comet Magnitude Estimates. Publ Astron Soc Pac 85, 470, 1973]. Visual observations are corrected to a standard aperture of 6.78 cm by 0.019 magnitudes per centimeter for refractors and 0.066 magnitudes per centimeter for reflectors. After applying the aperture correction and if a sufficient number of visual observations are submitted for a particular comet, we also determine personal corrections for each observer for each individual comet. For digital observations only a personal correction is applied. A single observer submitting both visual and digital magnitude measurements may also have separate corrections for each observing method. If the magnitudes shown in the text don't match those plotted in the lightcurves, it is because of the application of these corrections.

# Acknowledgements

In addition to observations submitted directly to the ALPO, we occasionally use data from other sources to augment our analysis. We would like to acknowledge with thanks observations submitted directly to the ALPO as well as those originally submitted to the International Comet Quarterly, Minor Planet Center, and COBS Comet Observation Database. In particular we have been using observations submitted to the COBS site by Thomas Lehmann for our analyzes so we would like to thank Thomas for his COBS observations. We would also like to thank the Jet Propulsion Laboratory for making available their Small-Body Browser and Orbit Visualizer and Seiichi Yoshida for his Comets for Windows programs that are used to produce the lightcurves and orbit diagrams in these pages. And last but not least, we'd like to thank <u>Syuichi Nakano</u> and the Minor Planet Center for their comet orbit elements, the asteroid surveys and dedicated comet hunters for their discoveries, and all of the observers who volunteer their time to adding to our knowledge of these amazing objects.

Thank you to everyone who contributed to the ALPO Comets Section!

Clear skies! - Carl Hergenrother

# **Comets Calendar**

## Lunar Phases

- Feb 05 Full Moon
- Feb 13 Last Quarter Moon
- Feb 20 New Moon
- Feb 27 First Quarter Moon

## Comets at Perihelion

- Feb 01 281P/MOSS [q = 4.03 au, 10.8-yr period, V ~ 19, discovered in 2013 by Morocco Oukaimeden Sky Survey, pre-discovery observations from 2000 and 2002, 3<sup>rd</sup> observed return, few recent observations so may be fainter than expected]
- Feb 09 C/2020 S4 (PANSTARRS) [q = 3.37 au, V ~ 15-16]
- Feb 11 C/2021 C5 (PANSTARRS) [q = 3.24 au, V ~ 16]
- Feb 18 C/2022 A2 (PANSTARRS) [q = 1.74 au, V ~ 8-9, more below]

## Photo Opportunities

- Feb 06 C/2022 E3 (ZTF) and C/2022 U2 (ATLAS) pass within ~20' of each other
- Feb 08-11 81P/Wild passes within a degree of the large emission nebula IC 4592
- Feb 11-12 C/2022 U2 (ATLAS) passes close to the Flaming Star Nebula (IC 405), bright emission nebula IC 410, and 7<sup>th</sup> mag open star cluster NGC 1893
- Feb 11 C/2022 E3 (ZTF) and Mars are within 1 deg of each other
- Feb 13 C/2022 E3 (ZTF) passes 0.5 deg from 6<sup>th</sup> mag open star cluster NGC 1647
- Feb 16-17 C/2022 U2 (ATLAS) moves along the western edge of the large supernova remnant Simeis 147

# **Recent Magnitudes Contributed to the ALPO Comets Section**

| Comet Des | YYYY MM DD.DD                  |        | Mag SC            | APER FL             | POW      | CON        | 1A      | TAIL |      | ICQ      | Q CODE         | Observer Name      |        |
|-----------|--------------------------------|--------|-------------------|---------------------|----------|------------|---------|------|------|----------|----------------|--------------------|--------|
|           | (UT)                           |        |                   | Т                   |          | Dia        | DC      | LENG | PA   |          |                |                    |        |
| C/2022 U2 | (ATLAS)                        |        |                   |                     |          |            |         |      |      |          |                |                    |        |
| 2022U2    | 2023 01 22.84                  | S      | 9.7 TK            | 20.3T10             | 77       | 6          | 2/      |      |      | ICQ XX   | GON05          | Juan Jose Gonzalez | Suarez |
| 2022U2    | 2023 01 21.42                  | S      | 9.7 TK            | 12.5B               | 30       | 6          | 1       |      |      | ICQ xx   | HER02          | Carl Hergenrother  |        |
| 2022U2    | 2023 01 20.77                  | S      | 9.5 TI            | 25.2L 4             | 68       | 5          | 2       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022U2    | 2023 01 18.76                  | S      | 10.0 TI           | 29.8L 4             | 66       | 3.3        | 2       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022U2    | 2023 01 17.76                  | S      | 9.7 TI            | 29.8L 4             | 66       | 4.3        | 2       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022U2    | 2023 01 11.76                  | S      | 10.0 TI           | 25.2L 4             | 68       | 3.5        | 2       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022U2    | 2023 01 03.83                  | S      | 12.9 HS           | 32.0L 5             | 144      |            |         |      |      | ICQ XX   | PIL01          | Uwe Pilz           |        |
| 2022U2    | 2023 01 03.24                  | S      | 11.0 TI           | 25.2L 4             | 92       | 2.5        | 2       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022U2    | 2023 01 03.24                  | S      | 10.3 TK           | 20.3T10             | 77       | 8          | 2/      |      |      | ICQ XX   | GON05          | Juan Jose Gonzalez | Suarez |
| C/2022 E3 | (ZTF)                          |        |                   |                     |          |            |         |      |      |          |                |                    |        |
| 2022E3    | 2023 01 30.80                  | S      | 5.0 TI            | 10.0L 4             | 22       | 15         | 4       |      |      | ICQ XX   | HAR11          | Christian Harder   |        |
| 2022E3    | 2023 01 30.46                  | S      | 5.0 AC            | 5.0B                | 7        | 15         | 5/      |      |      | ICQ XX   | AGUaa          | Salvador Aguirre   |        |
| 2022E3    | 2023 01 30.42                  | S      | 5.0 AC            | 5.0B                | 7        | 15         | 5/      |      |      | ICQ XX   | AGUaa          | Salvador Aguirre   |        |
| 2022E3    | 2023 01 29.52                  | I      | 5.1 TK            | 0.6E                | 1        | 25         | 6       |      |      | ICQ xx   | HER02          | Carl Hergenrother  |        |
| 2022E3    | 2023 01 29.52                  | S      | 5.2 TK            | 1.2B                | 2        | 25         | 6       |      |      | ICQ xx   | HER02          | Carl Hergenrother  |        |
| 2022E3    | 2023 01 29.46                  | Ι      | 5.0:AC            | 5.0B                | 7        |            |         |      |      | ICQ XX   | AGUaa          | Salvador Aquirre   |        |
| 2022E3    | 2023 01 29.10                  | S      | 4.8 TK            | 0.7E 3              | 1        |            |         |      |      | ICQ XX   | PIL01          | Uwe Pilz           |        |
| 2022E3    | 2023 01 28.48                  | S      | 4.6 HI            | 0.0                 | 1        | &30        | 2       |      |      | ICO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 28.43                  | М      | 4.8 HI            | 5.0                 | 10       | 23         | 5       | 15.0 | 264  | ICO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 28.43                  |        |                   | 5.0                 | 10       |            |         | 4.5  | 65   | ICO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 27.53                  | S      | 5.2 TK            | 0.6E                | 1        | 20         | 7       |      |      | ICO xx   | HER02          | Carl Hergenrother  |        |
| 2022E3    | 2023 01 27.53                  | S      | 5.2 TK            | 1.2B                | 2        | 20         | 6       |      |      | ICO xx   | HER02          | Carl Hergenrother  |        |
| 2022E3    | 2023 01 27.48                  | S      | 5.5 AC            | 5.0B                | 7        | 10         | 5/      |      |      | ICO XX   | AGUaa          | Salvador Aquirre   |        |
| 2022E3    | 2023 01 27.42                  | M      | 5.0 HT            | 5.0                 | 10       | 2.0        | 6       | 9.0  | 280  | TCO XX   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 27.42                  |        |                   | 5.0                 | 10       |            |         | 4.5  | 106  | TCO XX   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 27 42                  | S      | 4 8 HT            | 0 0                 | 1        |            |         |      | 100  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 26.41                  | M      | 5.2 HT            | 5.0                 | 10       | 20         | 6       | 10.0 | 290  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 26.41                  |        | 0.0               | 5.0                 | 10       | 20         | 0       | 2.75 | 126  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 25 51                  | S      | 52 TK             | 1 2B                | 2        | 25         | 5       | 2.75 | 120  | TCO xx   | HER02          | Carl Hergeprother  |        |
| 2022E3    | 2023 01 25 45                  | M      | 5 3 HT            | 5 0                 | 10       | 23         | 6       | 87   | 290  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 25 45                  |        | 0.0 111           | 5.0                 | 10       | 20         | 0       | 1 25 | 96   | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 23.13                  | М      | 56 нт             | 5.0                 | 10       | 21         | 4       | 5 5  | 312  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 21.11                  |        | 0.0 111           | 5.0                 | 10       | <u> </u>   | -       | 0.83 | 109  | TCO xx   | MOR            | Charles Morris     |        |
| 2022E3    | 2023 01 23 19                  | т      | 55-               | 12 5B 5             | 25       | 10         | 6       | 1    | 320  | TCO XX   | DECaa          | Michel Deconinck   |        |
| 202263    | 2023 01 23.19                  | c<br>T | 5.5 Trk           | 0 0E                | 1        | 15         | 6       | 1    | 520  | TCO XX   | CON05          | Juan Jose Conzalez | Suarez |
| 2022E3    | 2023 01 22.90                  | S      | 5 7 TK            | 5.0B                | 10       | 15         | 5       | 18   | 300  | TCO XX   | GON05          | Juan Jose Conzalez | Suarez |
| 2022E3    | 2023 01 22.31                  | M      | 5 8 HT            | 5.0                 | 10       | 15         | 4       | 6 0  | 315  | TCO xx   | MOR            | Charles Morris     | Duurez |
| 2022E3    | 2023 01 22.33                  | M      | 5 9 HT            | 5.0                 | 10       | 15         | 4       | 3 75 | 318  | TCO vv   | MOR            | Charles Morris     |        |
| 202263    | 2023 01 21.44                  | S      | 5 5 TK            | 1 2B                | 2        | 15         | 5       | 5.75 | 510  | TCO vv   | HEB02          | Carl Hergeprother  |        |
| 2022E3    | 2023 01 21.11                  | _      | 6 0 TT            | 5 0B                | 7        | 21         | 4       |      |      | TCO XX   | HAR11          | Christian Harder   |        |
| 2022E3    | 2023 01 20 74                  | S      | 6 2 TT            | 25 2T. 4            | 41       | 8          | 4       | 26 m | 320  | TCO XX   | HAR11          | Christian Harder   |        |
| 2022E3    | 2023 01 20.71                  | S      | 5 4 TK            | 0.75.3              | 1        | 8          | -       | 20 1 | .020 | TCO XX   | PTT.01         | Ilwo Pilz          |        |
| 202263    | 2023 01 19.17                  | S      | 5 4 TK            | 7 0B 6              | 16       | 8          | 56      | 08   | 300  | TCO XX   | PTT.01         | IIWe Pilz          |        |
| 202263    | 2023 01 19.17                  | S      | 6 1 TT            | 8 0B 5              | 26       | 10         | 4       | 0.0  | 500  | TCO XX   | HAR11          | Christian Harder   |        |
| 202263    | 2023 01 10.74                  | м      | 6 3 HT            | 5 0                 | 10       | 12         | 5       |      |      | TCO vv   | MOB            | Charles Morris     |        |
| 202263    | 2023 01 10.40                  | S      | 6 5 TK            | 5.0B                | 10       | 12         | 5       |      |      | TCO vv   | HEB02          | Carl Hergeprother  |        |
| 202263    | 2023 01 14.32                  | S      | 6 8 TT            | 10 OT. 4            | 22       | 7          | 4       |      |      | TCO XX   | HAR11          | Christian Harder   |        |
| 2022E3    | 2023 01 03.20                  | S      | 6 7 TK            | 5 0B                | 10       | 10         | 5/      |      |      | TCO XX   | GON05          | Juan Jose Conzalez | Suarez |
| C/2022 12 | (PANSTARRS)                    | 0      | 0.7 110           | 5.0D                | τU       | τu         | 57      |      |      | TOT WW   | 001100         | ouun oose Gonzarez | Duarez |
| 2022 112  | 2023 01 27 53                  | S      | 9 0 TK            | 12 5B               | 30       | 4 5        | 5       |      |      | TCO vv   | HEB02          | Carl Hergenrother  |        |
| 202272    | 2023 01 27.33                  | g      | 9 9 TK            | 20 3m10             | 77       | 4.J<br>6   | 3/      |      |      | TCO VV   | CON05          | Juan Jose Conzalez | Suaroz |
| 202272    | 2023 01 22.03                  | g      | 0.3 TT            | 20.JII0<br>25 2T /  | 68       | 1 5        | 3/      |      |      | TCO XX   | UND11          | Christian Harder   | Suarez |
| 202282    | 2023 01 21.12                  | 0      | 9.5 II<br>9.0 TT  | 25.2L 4             | 60       | 35         | 3/      |      |      | TCO VV   | UND11          | Christian Harder   |        |
| 2022A2    | 2023 01 20.70                  | 0      | 9.0 II            | 20.01 4             | 66       | 1.2        | 1       |      |      | TCO VV   | IIAD11         | Christian Harder   |        |
| 2022A2    | 2023 01 10.73                  | 2      | 9.4 II<br>0.0 TT  | 29.0L 4             | 66       | 4.J<br>2 E | 4       |      |      | TCO VV   |                | Christian Harder   |        |
| 2022A2    | 2023 01 17.73<br>2022 01 15 71 | с<br>С | 9.0 II<br>9.0 mv  | 29.0L 4             | 16       | 3.J<br>2.E | 4       |      |      | TCO VV   | DTT 01         |                    |        |
| 2022A2    | 2023 01 13.71<br>2022 01 11 77 | с<br>С | 0.9 IN            | 7.0B 0              | 10       | 2.5        | 2<br>2/ |      |      | TCO VV   |                | Owe FIIZ           |        |
| 2022A2    | 2023 01 11.77                  | 3      | 9.2 II            | 25.21 4             | 00       | 5.5        | 3/      |      |      | TCO VV   |                | Christian Hander   |        |
| 2022A2    | 2023 01 03.22                  | 2      | 9.4 11            | 2J.2L 4             | 00       | J          | 4       |      |      | TCO VV   | CONOE          |                    | 0      |
| 2UZZAZ    | 2023 UI U3.22                  | S      | 9.J TK            | 20.3110             | 11       | J          | 3/      |      |      | TCĂ YX   | CONOS          | Juan Jose Gonzalez | Suarez |
| C/ZUZU VZ | (415)<br>2022 01 22 02         | C      | 0 6               | 20 2010             | 77       | 2 5        | л /     |      |      | TOO 1/1/ | CONOF          | Tuon Tooo Con-ol-  | C      |
| 202072    | 2023 UL 22.83                  | 5      | 9.0 TK            | 20.3T10             | 20       | 3.5        | 4/      |      |      | TCO T    | GUNU5          | Judn Jose Gonzalez | suarez |
| 202072    | 2023 01 21.43                  | 200    | 9.J TK<br>0.0 m T | 12.JB<br>25 27 4    | 3U<br>20 | 2.0        | 4<br>1  |      |      | TCO VV   | пькU2<br>uлр11 | Christian Hander   |        |
| 202012    | 2023 UL 20./8                  | 200    | 9.0 TI<br>0.0 m T | 20.2L 4             | 00       | ∠.ŏ<br>?   | 4       |      |      | TCO VV   | DAKIL<br>UAD11 | Christian Harder   |        |
| 202072    | 2023 01 10.//<br>2023 01 17 76 | ు<br>ర | 9.0 II<br>0 5 mT  | ∠э.оц 4<br>20, рт и | 66       | 3 E        | 4       |      |      | TCO VV   | пакіі<br>цар11 | Christian Harder   |        |
| 202072    | 2023 UL 1/./0                  | 200    | 2.J TI<br>0.1 mm  | 29.0L 4             | 100      | 3.J<br>F   | 4       |      |      | TCO VV   |                | Uno Dila           |        |
| 202072    | 2023 UI 13./2                  | 5      | 9.1 TK            | 1.0B 0              | тю       | С          | 3       |      |      | tcă XX   | гттот          | owe FIIZ           |        |

| 2020V2     | 2023    | 01  | 11.76 | S  | 9.8  | ΤI | 25.2L 4 | 68  | 3.5 | 4  | 2.5 m 30 | ICQ | XX | HAR11 | Christian Harder               |
|------------|---------|-----|-------|----|------|----|---------|-----|-----|----|----------|-----|----|-------|--------------------------------|
| 2020V2     | 2023    | 01  | 03.23 | S  | 9.9  | ΤI | 25.2L 4 | 68  | 2.7 | 4  |          | ICQ | XX | HAR11 | Christian Harder               |
| 2020V2     | 2023    | 01  | 03.23 | S  | 9.7  | ΤK | 20.3T10 | 77  | 3.5 | 4  |          | ICQ | XX | GON05 | Juan Jose Gonzalez Suarez      |
| C/2019 U5  | (PANST  | ARR | S)    |    |      |    |         |     |     |    |          |     |    |       |                                |
| 2019U5     | 2023    | 01  | 18.26 | М  | 11.8 | AQ | 30.0L 5 | 122 | 1   | 3  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| 2019U5     | 2023    | 01  | 17.24 | М  | 11.7 | AQ | 30.0L 5 | 101 | 1   | 3  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| 2019U5     | 2023    | 01  | 03.25 | S  | 11.2 | ΤK | 20.3T10 | 77  | 4   | 2  |          | ICQ | XX | GON05 | Juan Jose Gonzalez Suarez      |
| C/2019 L3  | (ATLAS  | )   |       |    |      |    |         |     |     |    |          |     |    |       |                                |
| 2019L3     | 2023    | 01  | 13.02 | М  | 11.7 | AQ | 30.0L 5 | 101 | 1   | 3  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| C/2017 K2  | (PANST) | ARR | S)    |    |      |    |         |     |     |    |          |     |    |       |                                |
| 2017K2     | 2023    | 01  | 25.45 | Мx | 8.6  | ΤK | 7.0B    | 15  | 7.0 | 4  |          | ICQ | XX | WYA   | Christopher Wyatt              |
| 2017K2     | 2023    | 01  | 18.44 | Мx | 8.5  | ΤK | 7.0B    | 15  | 6   | 5  |          | ICQ | XX | WYA   | Christopher Wyatt              |
| 2017K2     | 2023    | 01  | 15.44 | Мx | 8.4  | ΤK | 7.0B    | 15  | 8.0 | 4/ |          | ICQ | XX | WYA   | Christopher Wyatt              |
| 2017K2     | 2023    | 01  | 14.45 | Мx | 8.6  | ΤK | 7.0B    | 15  | 6.0 | 5/ |          | ICQ | XX | WYA   | Christopher Wyatt              |
| 2017K2     | 2023    | 01  | 09.44 | хM | 8.1  | ΤK | 7.0B    | 15  | 7.0 | 4  |          | ICQ | XX | WYA   | Christopher Wyatt              |
| 118P/Shoem | naker-L | evy | ,     |    |      |    |         |     |     |    |          |     |    |       |                                |
| 118        | 2023    | 01  | 13.01 | М  | 13.4 | AQ | 30.0L 5 | 122 | 1   | 4  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| 81P/Wild   |         |     |       |    |      |    |         |     |     |    |          |     |    |       |                                |
| 81         | 2023    | 01  | 18.27 | М  | 11.7 | AQ | 30.0L 5 | 101 | 1   | 4  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| 29P/Schwas | smann-  | Wac | hmann |    |      |    |         |     |     |    |          |     |    |       |                                |
| 29         | 2023    | 01  | 22.86 | S  | 11.0 | ΤK | 20.3T10 | 77  | 3.5 | 1/ |          | ICQ | XX | GON05 | Juan Jose Gonzalez Suarez      |
| 29         | 2023    | 01  | 18.78 | S  | 11.2 | ΤI | 29.8L 4 | 108 | 2   | 1  |          | ICQ | XX | HAR11 | Christian Harder               |
| 29         | 2023    | 01  | 12.97 | М  | 12.7 | AQ | 30.0L 5 | 101 | 1   | 5  |          | ICQ | XX | DES01 | Jose Guilherme de Souza Aguiar |
| 29         | 2023    | 01  | 11.78 | S  | 10.8 | ΤI | 25.2L 4 | 92  | 2.5 | 1  |          | ICQ | XX | HAR11 | Christian Harder               |
| 29         | 2023    | 01  | 03.84 | S  | 12.0 | ΤK | 32.0L 5 | 144 |     | 7  |          | ICQ | XX | PIL01 | Uwe Pilz                       |
| 29         | 2023    | 01  | 03.26 | S  | 11.1 | ΤK | 20.3T10 | 100 | 3   | 1/ |          | ICQ | XX | GON05 | Juan Jose Gonzalez Suarez      |
|            |         |     |       |    |      |    |         |     |     |    |          |     |    |       |                                |

# New Discoveries, Recoveries and Other Comets News

## New Discoveries and Recoveries

P/2023 B1 (PANSTARRS) - P/2023 B1 (PANSTARRS) appears to be a Centaur comet that has recently undergone an outburst. The Pan-STARRS program used the Pan-STARRS2 1.8-m on Haleakala, Maui to find this comet on 2023 January 21 at 17<sup>th</sup> magnitude. The ATLAS program found a pre-discovery observation from January 13 when the comet appeared nearly stellar and probably at the early stages of its outburst. P/2023 B1 is on a low eccentricity (e = 0.13) Centaur orbit just outside of Jupiter's orbit with perihelion on 2023 August 13 at 6.13 au. [CBET 5209, MPEC 2023-B118]

*C/2023 A1 (Leonard)* – The first new comet discovery of 2023 was made by Greg Leonard (University of Arizona) with the Mount Lemmon Survey's 1.5-m reflector on 2023 January 9 at 18<sup>th</sup> magnitude. C/2023 A1 (Leonard) should peak at 16<sup>th</sup> magnitude around the time of its 2023 March 18 perihelion at 1.84 au. [CBET 5208, MPEC 2023-B66]

*C/2022 Y2 (Lemmon)* – A 20<sup>th</sup> magnitude apparently asteroidal object was discovered by the Catalina Sky Survey with the University of Arizona Mount Lemmon 1.5-m on 2022 December 24. The object was found to be cometary in follow-up observations after it was placed on the MPC NEOCP. C/2022 Y2 (Lemmon) is a Halley-type comet on an 87-year orbit. It is currently near its peak brightness of 18<sup>th</sup> magnitude. Perihelion will be on 2023 March 22 at 2.54 au. [CBET 5214, MPEC 2023-B225]

*C/2022 Y1 (Hogan)* – Joshua Hogan (University of Arizona) discovered his 1<sup>st</sup> comet with the Catalina Sky Survey's Mount Lemmon 1.5-m. C/2022 Y1 (Hogan) was 19<sup>th</sup> magnitude at discovery on 2022 December 24. Mount Lemmon pre-discovery observations were found back to November 5 when the comet was 20-21<sup>st</sup> magnitude. The comet is on a 44-year orbit and passed perihelion on 2022 November 27 at 2.96 au. [CBET 5205, MPEC 2023-A37]

*C/2022 W3 (Leonard)* – Greg Leonard (University of Arizona) found a new 19<sup>th</sup> magnitude long-period comet on images taken with the Mount Lemmon Survey's 1.5-m reflector on 2022 November 26. C/2022 W3 (Leonard) should peak around 14<sup>th</sup> magnitude this summer when it arrives at perihelion on 2023 June 22 at 1.40 au. If Leonard is a dynamically old comet, it may become brighter than magnitude 14. [CBET 5204, MPEC 2023-A29]

*C/2022 W2 (ATLAS)* – The "Asteroid Terrestrial-Impact Last Alert System" (ATLAS) search program found a new 18<sup>th</sup> magnitude long-period comet on 2022 November 24 with their 0.5-m f/2 Schmidt reflector at Haleakala, Hawaii. Prediscovery observation by the Zwicky Transient Facility (ZTF) were found on 3 nights in November. C/2022 W2 (ATLAS) will peak at 17<sup>th</sup> magnitude around the time of its 2023 March 8 perihelion at 3.12 au. [CBET 5203, MPEC 2023-A28]

# **Comets Brighter Than Magnitude 6**

# C/2022 E3 (ZTF)

Discovered 2022 March 2 by the Zwicky Transient Facility (ZTF) Dynamically old long-period comet

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2022 E3 (ZTF)     | )       |                 |                 |                |
|---------------------|---------|-----------------|-----------------|----------------|
| Epoch 2023 Feb. 25  | .0 TT = | JDT 2460000.5   |                 |                |
| T 2023 Jan. 12.785  | 11 TT   |                 |                 | Rudenko        |
| q 1.1122491         |         | (2000.0)        | P               | Q              |
| z -0.0002941        | Peri.   | 145.81563       | -0.60064727     | -0.07340650    |
| +/-0.0000004        | Node    | 302.55573       | +0.33752778     | +0.87940801    |
| e 1.0003271         | Incl.   | 109.16853       | +0.72477435     | -0.47037543    |
| From 5349 observat: | ions 20 | 21 July 10-2023 | 3 Jan. 27, mean | residual 0".6. |
| 1/a(orig) = +0.000  | 764 AU* | *-1. 1/a(fut) = | = -0.000025 AU* | *-1.           |

### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2022 E3 (ZTF) M |       |        |       |       |       |       |     |     |     |  |  |  |  |
|-------------------|-------|--------|-------|-------|-------|-------|-----|-----|-----|--|--|--|--|
|                   |       |        |       |       |       |       |     | (d  | eg) |  |  |  |  |
| Date              | R.A.  | Decl.  | r     | d     | Elong | Const | Mag | 40N | 40S |  |  |  |  |
| 2023-Feb-01       | 07 07 | +75 20 | 1.155 | 0.285 | 120E  | Cam   | 4.9 | 56  | 0   |  |  |  |  |
| 2023-Feb-06       | 05 08 | +46 34 | 1.180 | 0.317 | 120E  | Aur   | 5.2 | 84  | 3   |  |  |  |  |
| 2023-Feb-11       | 04 48 | +26 11 | 1.209 | 0.419 | 112E  | Tau   | 5.9 | 76  | 22  |  |  |  |  |
| 2023-Feb-16       | 04 41 | +14 37 | 1.242 | 0.551 | 103E  | Tau   | 6.6 | 65  | 31  |  |  |  |  |
| 2023-Feb-21       | 04 38 | +07 45 | 1.279 | 0.697 | 97E   | Tau   | 7.3 | 57  | 36  |  |  |  |  |
| 2023-Feb-26       | 04 38 | +03 19 | 1.320 | 0.847 | 91E   | Tau   | 7.8 | 51  | 38  |  |  |  |  |
| 2023-Mar-03       | 04 38 | +00 17 | 1.363 | 0.998 | 86E   | Tau   | 8.3 | 46  | 40  |  |  |  |  |

### Comet Magnitude Formula (from ALPO and COBS data)

| m1 | = | 5.8 | + | 5 | log | d | + | 12.3 | log | r | [Through T-70 days]         |
|----|---|-----|---|---|-----|---|---|------|-----|---|-----------------------------|
| m1 | = | 6.9 | + | 5 | log | d | + | 6.8  | log | r | [T-70 to perihelion]        |
| m1 | = | 7.0 | + | 5 | log | d | + | 10.0 | log | r | [Since perihelion, assumed] |



### Recent Magnitude Measurements Contributed to the ALPO Comets Section

| Red | cent Mag | gnitud | e Me | easurem | lent | s in | ΙCÇ | 2 forma | t:  |     |     |    |      |     |     |    |       |           |           |
|-----|----------|--------|------|---------|------|------|-----|---------|-----|-----|-----|----|------|-----|-----|----|-------|-----------|-----------|
| Cor | net Des  | YYYY   | MM   | DD.DD   |      | Mag  | SC  | APER F  | L P | POW | COM | A  | TAII |     | ICQ |    | CODE  | Observer  | Name      |
|     |          |        | (U   | Τ)      |      |      |     | Т       |     |     | Dia | DC | LENG | PA  |     |    |       |           |           |
|     | 2022E3   | 2023   | 01   | 30.80   | S    | 5.0  | ΤI  | 10.0L   | 4   | 22  | 15  | 4  |      |     | ICQ | XX | HAR11 | Christia  | n Harder  |
|     | 2022E3   | 2023   | 01   | 30.46   | S    | 5.0  | AC  | 5.0B    |     | 7   | 15  | 5/ |      |     | ICQ | XX | AGUaa | Salvador  | Aguirre   |
|     | 2022E3   | 2023   | 01   | 30.42   | S    | 5.0  | AC  | 5.0B    |     | 7   | 15  | 5/ |      |     | ICQ | XX | AGUaa | Salvador  | Aguirre   |
|     | 2022E3   | 2023   | 01   | 29.52   | I    | 5.1  | ΤK  | 0.6E    |     | 1   | 25  | 6  |      |     | ICQ | XX | HER02 | Carl Her  | genrother |
|     | 2022E3   | 2023   | 01   | 29.52   | S    | 5.2  | ΤK  | 1.2B    |     | 2   | 25  | 6  |      |     | ICQ | XX | HER02 | Carl Her  | genrother |
|     | 2022E3   | 2023   | 01   | 29.46   | I    | 5.0: | AC  | 5.0B    |     | 7   |     |    |      |     | ICQ | XX | AGUaa | Salvador  | Aguirre   |
|     | 2022E3   | 2023   | 01   | 29.10   | S    | 4.8  | ΤK  | 0.7E    | 3   | 1   |     |    |      |     | ICQ | XX | PIL01 | Uwe Pilz  |           |
|     | 2022E3   | 2023   | 01   | 28.48   | S    | 4.6  | ΗI  | 0.0     |     | 1   | &30 | 2  |      |     | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 28.43   | М    | 4.8  | ΗI  | 5.0     |     | 10  | 23  | 5  | 15.0 | 264 | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 28.43   |      |      |     | 5.0     |     | 10  |     |    | 4.5  | 65  | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 27.53   | S    | 5.2  | ΤK  | 0.6E    |     | 1   | 20  | 7  |      |     | ICQ | XX | HER02 | Carl Her  | genrother |
|     | 2022E3   | 2023   | 01   | 27.53   | S    | 5.2  | ΤK  | 1.2B    |     | 2   | 20  | 6  |      |     | ICQ | XX | HER02 | Carl Her  | genrother |
|     | 2022E3   | 2023   | 01   | 27.48   | S    | 5.5  | AC  | 5.0B    |     | 7   | 10  | 5/ |      |     | ICQ | XX | AGUaa | Salvador  | Aguirre   |
|     | 2022E3   | 2023   | 01   | 27.42   | М    | 5.0  | ΗI  | 5.0     |     | 10  | 20  | 6  | 9.0  | 280 | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 27.42   |      |      |     | 5.0     |     | 10  |     |    | 4.5  | 106 | ICQ | XX | MOR   | Charles I | Morris    |
|     | 2022E3   | 2023   | 01   | 27.42   | S    | 4.8  | ΗI  | 0.0     |     | 1   |     |    |      |     | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 26.41   | М    | 5.2  | ΗI  | 5.0     |     | 10  | 20  | 6  | 10.0 | 290 | ICQ | XX | MOR   | Charles 1 | Morris    |
|     | 2022E3   | 2023   | 01   | 26.41   |      |      |     | 5.0     |     | 10  |     |    | 2.75 | 126 | ICQ | XX | MOR   | Charles 1 | Morris    |
|     |          |        |      |         |      |      |     |         |     |     |     |    |      |     |     |    |       |           |           |

| 2022E3 | 2023 01 25.51 | S | 5.2 TK | 1.2B    | 2  | 25 | 5  |      |      | ICQ | XX H | HER02 | Carl Hergenrother         |
|--------|---------------|---|--------|---------|----|----|----|------|------|-----|------|-------|---------------------------|
| 2022E3 | 2023 01 25.45 | М | 5.3 HI | 5.0     | 10 | 23 | 6  | 8.7  | 290  | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 25.45 |   |        | 5.0     | 10 |    |    | 1.25 | 96   | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 24.41 | М | 5.6 HI | 5.0     | 10 | 21 | 4  | 5.5  | 312  | ICQ | XX M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 24.41 |   |        | 5.0     | 10 |    |    | 0.83 | 109  | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 23.19 | Ι | 5.5 -  | 12.5B 5 | 25 | 10 | 6  | 1    | 320  | ICQ | XX D | DECaa | Michel Deconinck          |
| 2022E3 | 2023 01 22.98 | S | 5.5 TK | 0.0E    | 1  | 15 | 6  |      |      | ICQ | XX G | GON05 | Juan Jose Gonzalez Suarez |
| 2022E3 | 2023 01 22.94 | S | 5.7 TK | 5.0B    | 10 | 15 | 5  | 1.8  | 300  | ICQ | XX G | GON05 | Juan Jose Gonzalez Suarez |
| 2022E3 | 2023 01 22.35 | М | 5.8 HI | 5.0     | 10 | 15 | 4  | 6.0  | 315  | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 21.44 | М | 5.9 HI | 5.0     | 10 | 15 | 4  | 3.75 | 318  | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 21.41 | S | 5.5 TK | 1.2B    | 2  | 15 | 5  |      |      | ICQ | XX H | HER02 | Carl Hergenrother         |
| 2022E3 | 2023 01 20.74 | - | 6.0 TI | 5.0B    | 7  | 21 | 4  |      |      | ICQ | XX H | HAR11 | Christian Harder          |
| 2022E3 | 2023 01 20.74 | S | 6.2 TI | 25.2L 4 | 41 | 8  | 4  | 26 n | n320 | ICQ | XX H | HAR11 | Christian Harder          |
| 2022E3 | 2023 01 19.17 | S | 5.4 TK | 0.7E 3  | 1  | 8  |    |      |      | ICQ | XX F | PILO1 | Uwe Pilz                  |
| 2022E3 | 2023 01 19.17 | S | 5.4 TK | 7.0B 6  | 16 | 8  | S6 | 0.8  | 300  | ICQ | XX F | PILO1 | Uwe Pilz                  |
| 2022E3 | 2023 01 18.74 | S | 6.1 TI | 8.0R 5  | 26 | 10 | 4  |      |      | ICQ | XX H | HAR11 | Christian Harder          |
| 2022E3 | 2023 01 18.46 | М | 6.3 HI | 5.0     | 10 | 12 | 5  |      |      | ICQ | xx M | 10R   | Charles Morris            |
| 2022E3 | 2023 01 14.52 | S | 6.5 TK | 5.0B    | 10 | 12 | 5  |      |      | ICQ | XX H | HER02 | Carl Hergenrother         |
| 2022E3 | 2023 01 03.21 | S | 6.8 TI | 10.0L 4 | 22 | 7  | 4  |      |      | ICQ | XX H | HAR11 | Christian Harder          |
| 2022E3 | 2023 01 03.20 | S | 6.7 TK | 5.0B    | 10 | 10 | 5/ |      |      | ICQ | XX G | GON05 | Juan Jose Gonzalez Suarez |

C/2022 E3 (ZTF) was the "star" of January. As predicted, it became a borderline naked eye object for those observing from dark skies with most observers reporting a peak brightness between magnitude 4.6 and 5.1. The recent peak in brightness was due to a January 12 perihelion at 1.11 au from the Sun and close approach to Earth on February 1 at 0.29 au. The close approach resulted in a large visual coma of 15'-30' in diameter though to the eye it looked like a slightly fuzzy star. Charles Morris even detected a visual gas tail up to 15 deg in length with a 4 deg dust tail in 10x50 binoculars on Jan. 28.

As we passed through the orbital plane of ZTF in late January, its tails changed in appearance and direction from night to night. For images and sketches of C/2022 E3, please check out the Comets Section image gallery (https://alpo-astronomy.org/gallery3/index.php/Comet-Images-and-Observations) and pdf version of this report which can be found at <a href="http://www.alpo-astronomy.org/cometblog/">http://alpo-astronomy.org/gallery3/index.php/Comet-Images-and-Observations</a>) and pdf version of this report which can be found at <a href="http://www.alpo-astronomy.org/cometblog/">http://www.alpo-astronomy.org/cometblog/</a>. For an excellent explanation of comet's changing appearance, check out Bob King's excellent article at <a href="https://skyandtelescope.org">skyandtelescope.org</a>. Especially cool is the simulation of ZTF's changing tail by Gideon van Buitenen bear the bottom of the article.

ZTF starts the month near maximum brightness as it is still close to Earth. The comet should steadily fade throughout the month as it moves away from both the Earth and Sun. Though how rapidly it will fade is uncertain, it is possible it will fade to magnitude 6.0 by mid-month and close to 8.0 by the end of the month. The comet will also be moving south through Camelopardalis (Feb 1-4), Auriga (4-9), and Taurus (9-28) in the evening sky. This means observers in the southern hemisphere should be able to see ZTF early in the month.

C/2022 E3 (ZTF) was discovered on 2022 March 2 at 17th magnitude by the Zwicky Transient Facility (ZTF) with the 1.2-m f/2.4 Schmidt on Mount Palomar when it was 4.3 au from the Sun. The ZTF uses the 1.2-m f/2.4 Samuel Oschin Schmidt on Mount Palomar which is equipped with a gigantic 16x6kx6k CCD array covering 47 square degrees of sky.

ZTF is a dynamically old long-period comet which means this is not its first time approaching close to the Sun. Based on the latest orbit published by the Minor Planet Center on MPEC 2023-B154, it was last at perihelion nearly 47,000 years ago. Perturbations by the major planets do result in this possibly being its last trip through the inner solar system. The negative 1/a(fut) value means it will recede back into the depth of deep space on a hyperbolic orbit and may ultimately leave our solar system forever.

## Photo Opportunities:

| Feb 06 | C/2022 E3 (ZTF) and C/2022 U2 (ATLAS) are within ~20' of each other    |
|--------|------------------------------------------------------------------------|
| Feb 11 | C/2022 E3 (ZTF) and Mars are within 1 deg of each other                |
| Feb 13 | C/2022 E3 (ZTF) passes 0.5 deg from 6th mag open star cluster NGC 1647 |



Figure 1 - A sampling of sketches of C/2022 E3 (ZTF). (Upper left) Ludovic Prebet observed on 2023 February 2 with Vixen 54x125 binoculars. (Upper right) Michel Deconinck used a parit of Vixen 25x125 binoculars on January 23. (Lower left) Gregory T. Shanos made this sketch base on his impression of ZTF on January 31 through a Meade LX200 GPS 10" SCT at f/10 and 62.5 power. (Lower right) Phill Parslow observed ZTF on January 29 with a 80mm f/5 refractor at 26 power.



Figure 2 - A collection of images of C/2022 E3 (ZTF) straddling the time of orbit plane crossing on Jan. 23 and showing changes in the appearance of its tails. Images were taken by Dan Bartlett (Jan 18, 28), Michael Jager (Jan 20), Chris Schur (Jan 21), Gregg Ruppel (Jan 22), Eliot Herman (Jan 24), and Mike Olason (Jan 25). Images are not to scale and are aligned in the direction of the gas tail.

# **Comets Between Magnitude 6 and 10**

# C/2017 K2 (PANSTARRS)

Discovered 2017 May 21 by the Pan-STARRS survey with the Pan-STARRS1 1.8-m on Haleakala Dynamically ??? long-period comet

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2017 K2 (PAN     | STARRS)   |               |                  |                   |
|--------------------|-----------|---------------|------------------|-------------------|
| Epoch 2023 Feb. 25 | .0 TT =   | JDT 2460000.5 |                  |                   |
| T 2022 Dec. 19.688 | 73 TT     |               |                  | Rudenko           |
| q 1.7968936        | (         | 2000.0)       | Р                | Q                 |
| z -0.0004373       | Peri.     | 236.20152     | +0.01818935      | +0.04921872       |
| +/-0.000001        | Node      | 88.23602      | -0.18087331      | +0.98247051       |
| e 1.0007857        | Incl.     | 87.56336      | -0.98333819      | -0.17980328       |
| From 11203 observa | tions 20  | 15 Nov. 23-20 | 22 Sept. 27, mea | an residual 0".5. |
| 1/a(orig) = +0.000 | 0.59 AU** | -1.1/a(fut)   | = +0.001150 AU** | -1.               |

### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2017 K2 (PANSTARRS) Max El |       |        |       |       |       |       |     |     |     |  |  |  |  |
|------------------------------|-------|--------|-------|-------|-------|-------|-----|-----|-----|--|--|--|--|
|                              |       |        |       |       |       |       |     | (d  | eg) |  |  |  |  |
| Date                         | R.A.  | Decl.  | r     | d     | Elong | Const | Mag | 40N | 40S |  |  |  |  |
| 2023-Feb-01                  | 22 50 | -70 19 | 1.880 | 2.249 | 55E   | Ind   | 7.8 | 0   | 33  |  |  |  |  |
| 2023-Feb-06                  | 23 36 | -69 11 | 1.900 | 2.236 | 57E   | Tuc   | 7.8 | 0   | 35  |  |  |  |  |
| 2023-Feb-11                  | 00 17 | -67 28 | 1.921 | 2.228 | 59E   | Tuc   | 7.8 | 0   | 37  |  |  |  |  |
| 2023-Feb-16                  | 00 53 | -65 15 | 1.945 | 2.227 | 60E   | Tuc   | 7.8 | 0   | 39  |  |  |  |  |
| 2023-Feb-21                  | 01 24 | -62 40 | 1.969 | 2.233 | 61E   | Hyi   | 7.9 | 0   | 41  |  |  |  |  |
| 2023-Feb-26                  | 01 51 | -59 49 | 1.996 | 2.246 | 62E   | Hyi   | 7.9 | 0   | 42  |  |  |  |  |
| 2023-Mar-03                  | 02 14 | -56 48 | 2.024 | 2.266 | 63E   | Hor   | 8.0 | 0   | 43  |  |  |  |  |

### Comet Magnitude Formula (from ALPO and COBS data)







While C/2022 E3 (ZTF) gets all the attention in the northern hemisphere, C/2017 K2 (PANSTARRS), last summer's hit comet, is still going strong but only for southern hemisphere observers. Though it is 3 magnitudes fainter than C/2022 E3, K2 is currently acting like E3's doppelganger. Images taken by Martin Mobberley show two dust tails that are separated by ~140 degrees and don't look that dissimilar from E3, late January appearence.

Chris Wyatt has been following C/2017 K2 visually, finding it at magnitude 8.4 to 8.6 with a large 6' to 8' moderately condensed coma.

Though C/2017 K2 (PANSTARRS) is only 2 months from its 2022 December 19 perihelion at 1.80 au and slowly moving away from the Sun, its distance to the Earth remains fairly constant in February at 2.2 au from Earth. As a result, it should stay nearly constant in brightness with a slight fade of only 0.1-0.2 magnitudes during the month.

As mentioned above, K2 is a southern hemisphere only object and is observable this month in the evening sky as it moves through Indus (Feb 1-5), Tucana (5-20), and Hydrus (20-28).



Figure 3 - Martin Mobberley imaged C/2017 K2 (PANSTARRS) on 2023 January 20 with an iTelescopes 0.51-m CDK and FLI PL09000 camera.

# C/2020 V2 (ZTF)

### Discovered 2020 November 2 by the ZTF survey Dynamically new long-period comet

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2020 V2 (     | ZTF)       |              |                                |                |
|-----------------|------------|--------------|--------------------------------|----------------|
| Epoch 2023 Feb. | 25.0 TT =  | JDT 2460000  | .5                             |                |
| T 2023 May 8.56 | 944 TT     |              |                                | Rudenko        |
| q 2.2278276     |            | (2000.0)     | P                              | Q              |
| z -0.0004163    | Peri.      | 162.43191    | +0.69787543                    | +0.59389985    |
| +/-0.000003     | Node       | 212.37219    | +0.53387603                    | -0.05877318    |
| e 1.0009273     | Incl.      | 131.61093    | +0.47743719                    | -0.80238936    |
| From 3736 obser | vations 20 | 20 Apr. 18-2 | 023 Jan. 25, mean              | residual 0".4. |
| 1/a(orig) = -0. | 000140 AU* | *-1, 1/a(fut | $) = -0.000379 \text{ AU}^{*}$ | *-1.           |

#### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2020 V2 (Z | TF)   |        |       |       |       |       |     | Max<br>(d | El<br>eq) |
|--------------|-------|--------|-------|-------|-------|-------|-----|-----------|-----------|
| Date         | R.A.  | Decl.  | r     | d     | Elong | Const | Mag | 40N       | 40s       |
| 2023-Feb-01  | 01 29 | +56 47 | 2.486 | 2.227 | 93E   | Cas   | 9.2 | 64        | 0         |
| 2023-Feb-06  | 01 31 | +53 34 | 2.461 | 2.287 | 88E   | Per   | 9.2 | 62        | 0         |
| 2023-Feb-11  | 01 34 | +50 35 | 2.438 | 2.353 | 83E   | And   | 9.3 | 60        | 0         |
| 2023-Feb-16  | 01 37 | +47 52 | 2.416 | 2.422 | 77E   | And   | 9.3 | 56        | 0         |
| 2023-Feb-21  | 01 40 | +45 23 | 2.394 | 2.494 | 72E   | And   | 9.3 | 52        | 0         |
| 2023-Feb-26  | 01 43 | +43 07 | 2.374 | 2.567 | 67E   | And   | 9.4 | 48        | 0         |
| 2023-Mar-03  | 01 47 | +41 04 | 2.355 | 2.640 | 62E   | And   | 9.4 | 43        | 0         |

### Comet Magnitude Formula (from ALPO and COBS data)

| m1 | = | -1.4 | + | 5 | log | d | + | 15.9 | log | r | [up to T-580 days               |
|----|---|------|---|---|-----|---|---|------|-----|---|---------------------------------|
| m1 | = | 3.2  | + | 5 | log | d | + | 10.1 | log | r | [between T-580 and T-220 days]  |
| m1 | = | 4.2  | + | 5 | log | d | + | 8.0  | log | r | [T-220 days and onward, assumed |



### Recent Magnitude Measurements Contributed to the ALPO Comets Section

| Recent Mac | nitude Measurem | ents in | ICQ format: | :   |     |    |          |          |       |                           |
|------------|-----------------|---------|-------------|-----|-----|----|----------|----------|-------|---------------------------|
| Comet Des  | YYYY MM DD.DD   | Mag     | SC APER FL  | POW | COM | A  | TAIL     | ICQ      | CODE  | Observer Name             |
|            | (UT)            |         | Т           |     | Dia | DC | LENG PA  | <u>.</u> |       |                           |
| 2020V2     | 2023 01 22.83   | S 9.6   | TK 20.3T10  | 77  | 3.5 | 4/ |          | ICQ XX   | GON05 | Juan Jose Gonzalez Suarez |
| 2020V2     | 2023 01 21.43   | S 9.5   | TK 12.5B    | 30  | 2.5 | 4  |          | ICQ xx   | HER02 | Carl Hergenrother         |
| 2020V2     | 2023 01 18.77   | S 9.8   | TI 29.8L 4  | 66  | 3   | 4  |          | ICQ XX   | HAR11 | Christian Harder          |
| 2020V2     | 2023 01 17.76   | S 9.5   | TI 29.8L 4  | 66  | 3.5 | 4  |          | ICQ XX   | HAR11 | Christian Harder          |
| 2020V2     | 2023 01 15.72   | S 9.1   | TK 7.0B 6   | 16  | 5   | 3  |          | ICQ XX   | PIL01 | Uwe Pilz                  |
| 2020V2     | 2023 01 11.76   | S 9.8   | TI 25.2L 4  | 68  | 3.5 | 4  | 2.5 m 30 | ICQ XX   | HAR11 | Christian Harder          |
| 2020V2     | 2023 01 03.23   | S 9.9   | TI 25.2L 4  | 68  | 2.7 | 4  |          | ICQ XX   | HAR11 | Christian Harder          |
| 2020V2     | 2023 01 03.23   | S 9.7   | TK 20.3T10  | 77  | 3.5 | 4  |          | ICQ XX   | GON05 | Juan Jose Gonzalez Suarez |
|            |                 |         |             |     |     |    |          |          |       |                           |

C/2022 E3 (ZTF) isn't the only comet visible in reasonably sized telescopes in the northern sky. C/2020 V2 (ZTF), as well as C/2022 A2 (PANSTARRS) and C/2022 U2 (ATLAS) (more below), is also a nice northern comet.

C/2020 V2 is a dynamically new comet presumably making its first perihelion close to the Sun. Perihelion is still a few months away on 2023 May 8 at 2.23 au from the Sun. The rather distant perihelion means that like C/2017 K2, C/2020 V2 will remain near its maximum brightness for months. As a result, the comet will stay brighter than magnitude 10 for most of 2023 with two likely peaks in brightness. The first peak occurred last month at around magnitude 9 when the comet reached the first of two minimum distances to the Earth (2023 January 6 at 2.06 au from the Earth while 2.63 au from the Sun). A second slightly brighter peak, also at magnitude 9, is predicted around the time of its second close approach (September 17 at 1.85 au from Earth and 2.68 au from the Sun). Though the comet should be intrinsically brightest around its May 8 perihelion at 2.23 au, it will be located 3.22 au from Earth and on the far side of the Sun at that time.

Visual observers (Juan Jose Gonzalez Suarez, Carl Hergenrother, Christian Harder, and Uwe Pilz) observed V2 7 nights in January and found it between magnitude 9.1 and 9.9 (aperture corrected to 9.1 to 9.6) with a slightly to moderately condensed (DC = 3-4.5) 2.7' to 5'coma. A few visual observers including Christian Harder and Ludovic Prebet observed a short tail.

This month, C/2022 V2 continues to move through the far northern evening sky in Cassiopeia (Feb 1-4), Perseus (4-10), and Andromeda (10-28).

| Dobson 18" - 35m           | m (x 60)  | L. Perbet<br>Mar. 26 . N1 . 2023 |
|----------------------------|-----------|----------------------------------|
| - Mcffes as                |           | 21" TU<br>Qrt z 8/2 Nunges       |
| /                          |           |                                  |
| 1                          | TY2 4(45) |                                  |
| 1                          | fur.      |                                  |
|                            |           |                                  |
|                            |           |                                  |
|                            | x //      |                                  |
|                            | . 016 ANM | 1.00 miles                       |
|                            |           |                                  |
| 1.                         |           |                                  |
|                            |           |                                  |
| - Pas trouver ous Jumelles | 10 × 42   | - 1.8/m                          |

Figure 4 – Here's what C/2020 V2 (ZTF) looked like to Ludovic Prebet. Ludovic used a 18" dobsonian at 60 and 160 power on 2023 January 29.

# C/2022 A2 (PANSTARRS)

# Discovered 2022 January 10 by Pan-STARRS with the Pan-STARRS2 telescope at Haleakala Dynamically new long-period comet

### Orbit (from Minor Planet Center, MPEC 2022-B154)

| C/2022 A2 (PAN       | STARRS) |               |                |                |
|----------------------|---------|---------------|----------------|----------------|
| Epoch 2023 Feb. 25   | .0 TT = | JDT 2460000.5 | 5              |                |
| T 2023 Feb. 18.267   | 07 TT   |               |                | Rudenko        |
| q 1.7352866          |         | (2000.0)      | P              | Q              |
| z -0.0001839         | Peri.   | 88.36710      | +0.01740202    | +0.99011789    |
| +/-0.0000004         | Node    | 171.57948     | -0.09144890    | -0.13701520    |
| e 1.0003192          | Incl.   | 108.14706     | +0.99565771    | -0.02988973    |
| From 812 observation | ons 202 | 2 Jan. 9-2023 | Jan. 25, mean  | residual 0".5. |
| 1/a(orig) = -0.000   | 049 AU* | *-1, 1/a(fut) | = -0.000066 AU | J**−1.         |

#### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2022 A2 (P | ANSTARR | S)     |       |       |       |       |     | Max | El  |
|--------------|---------|--------|-------|-------|-------|-------|-----|-----|-----|
|              |         |        |       |       |       |       |     | (d  | eg) |
| Date         | R.A.    | Decl.  | r     | d     | Elong | Const | Mag | 40N | 40S |
| 2023-Feb-01  | 19 39   | +58 37 | 1.750 | 1.674 | 77M   | Dra   | 8.8 | 38  | 0   |
| 2023-Feb-06  | 20 19   | +57 56 | 1.743 | 1.720 | 74M   | Суд   | 8.9 | 35  | 0   |
| 2023-Feb-11  | 20 54   | +56 50 | 1.738 | 1.775 | 71M   | Сер   | 8.9 | 32  | 0   |
| 2023-Feb-16  | 21 25   | +55 26 | 1.736 | 1.837 | 68M   | Сер   | 9.0 | 29  | 0   |
| 2023-Feb-21  | 21 51   | +53 55 | 1.736 | 1.905 | 64M   | Суд   | 9.0 | 27  | 0   |
| 2023-Feb-26  | 22 14   | +52 22 | 1.738 | 1.977 | 61M   | Lac   | 9.1 | 25  | 0   |
| 2023-Mar-03  | 22 34   | +50 51 | 1.743 | 2.050 | 58M   | Lac   | 9.2 | 23  | 0   |

### Comet Magnitude Formula (from ALPO and COBS data)

| m1 | = | 7.6  | + | 5 | log | d | + | 13.6 | log | r | [Through T-220 days]          |
|----|---|------|---|---|-----|---|---|------|-----|---|-------------------------------|
| m1 | = | -0.2 | + | 5 | log | d | + | 29.4 | log | r | [Between T-220 and T-80 days] |
| m1 | = | 3.5  | + | 5 | log | d | + | 17.3 | log | r | [After T-80 days, assumed]    |



| Comet Des | YYYY MM DD.DD   | Mag SC APER FL POW | COMA   | TAIL ICQ | CODE Observer Name              |
|-----------|-----------------|--------------------|--------|----------|---------------------------------|
|           | (UT)            | Т                  | Dia DC | LENG PA  |                                 |
| 2022A2    | 2023 01 27.53 S | 9.0 TK 12.5B 30    | 4.5 5  | ICQ XX   | HER02 Carl Hergenrother         |
| 2022A2    | 2023 01 22.85 S | 8.9 TK 20.3T10 77  | 6 3/   | ICQ XX   | GON05 Juan Jose Gonzalez Suarez |
| 2022A2    | 2023 01 18.75 S | 9.4 TI 29.8L 4 66  | 4.3 4  | ICQ XX   | HAR11 Christian Harder          |
| 2022A2    | 2023 01 17.75 S | 9.0 TI 29.8L 4 66  | 3.5 4  | ICQ XX   | HAR11 Christian Harder          |
| 2022A2    | 2023 01 15.71 S | 8.9 TK 7.0B 6 16   | 2.5 3  | ICQ XX   | PILO1 Uwe Pilz                  |
| 2022A2    | 2023 01 11.77 S | 9.2 TI 25.2L 4 68  | 3.5 3/ | ICQ XX   | HAR11 Christian Harder          |
| 2022A2    | 2023 01 03.22 S | 9.4 TI 25.2L 4 68  | 5 4    | ICQ XX   | HAR11 Christian Harder          |
| 2022A2    | 2023 01 03.22 S | 9.5 TK 20.3T10 77  | 5 3/   | ICQ XX   | GON05 Juan Jose Gonzalez Suarez |
|           |                 |                    |        |          |                                 |
|           |                 |                    |        |          |                                 |

The Pan-STARRS survey discovered C/2022 A2 (PANSTARRS) at 19-20<sup>th</sup> magnitude with the Pan-STARRS2 1.8-m Ritchey-Chretien reflector on Haleakala, Hawaii back at the start of 2022 on January 10. At discovery, the comet was 4.9 au from the Sun and 4.6 au from Earth but, quite surprisingly for an apparently dynamically new long-period comet, has rapidly brightened to around 8-9<sup>th</sup> magnitude in January.

The comet was well observed by visual observers in January with all finding it between magnitude 8.9 and 9.5 (aperture corrected to 8.6 to 9.2). Coma sizes ranged from 2.5' to 6' with it being loosely to moderately condensed at DCs of 3.5 to 5.

A2 should start the month close to its peak brightness between magnitude 8.5 and 9.0. It made a rather distant close approach to Earth last month on the 17<sup>th</sup> at 1.61 au. Perihelion is this month on the 18<sup>th</sup> at 1.74 au from the Sun. A slow fade should commence in February as the comet moves away from the Earth but we're only talking a few tenths of a magnitude so A2 may still be around magnitude 9.1 at the end of the month.

Like last month, C/2022 A2 is a northern object observable in both the evening and morning sky, though higher up in the morning as it moves through Draco (Feb 1-2), Cygnus (2-8), Cepheus (8-16), Cygnus (16-23), and Lacerta (23-28). Its northern location means it remains limited to northern hemisphere observers this month.



ASI 183 MM Pro camera + Luminance filter.

# C/2022 U2 (ATLAS)

Discovered 2022 October 25 by the Asteroid Terrestrial-Impact Last Alert System (ATLAS) Dynamically old long period comet

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2022 U2 (ATL)      | AS)      |                 |                |                |
|----------------------|----------|-----------------|----------------|----------------|
| Epoch 2023 Feb. 25   | .0 TT =  | JDT 2460000.5   |                |                |
| T 2023 Jan. 14.221   | 61 TT    |                 |                | Rudenko        |
| q 1.3280308          |          | (2000.0)        | P              | Q              |
| z +0.0104396         | Peri.    | 147.90970       | -0.18795052    | -0.76578597    |
| +/-0.0000108         | Node     | 304.47605       | +0.66684604    | +0.36023801    |
| e 0.9861359          | Incl.    | 48.24952        | +0.72110399    | -0.53272922    |
| From 545 observation | ons 2022 | 2 Oct. 25-2023  | Jan. 25, mean  | residual 0".5. |
| 1/a(orig) = +0.011   | 633 AU*' | *-1, 1/a(fut) = | = +0.010154 AU | **-1.          |

### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2022 U2 (A | TLAS) |        |       |       |       |       |      | Max | El   |
|--------------|-------|--------|-------|-------|-------|-------|------|-----|------|
|              |       |        |       |       |       |       |      | (d  | leg) |
| Date         | R.A.  | Decl.  | r     | d     | Elong | Const | Mag  | 40N | 40S  |
| 2023-Feb-01  | 04 36 | +52 00 | 1.353 | 0.566 | 118E  | Per   | 9.6  | 78  | 0    |
| 2023-Feb-06  | 04 58 | +43 43 | 1.370 | 0.584 | 119E  | Aur   | 9.9  | 86  | 5    |
| 2023-Feb-11  | 05 15 | +35 52 | 1.389 | 0.616 | 118E  | Aur   | 10.2 | 86  | 13   |
| 2023-Feb-16  | 05 30 | +28 49 | 1.413 | 0.661 | 116E  | Aur   | 10.6 | 79  | 20   |
| 2023-Feb-21  | 05 42 | +22 41 | 1.439 | 0.717 | 114E  | Tau   | 11.1 | 73  | 26   |
| 2023-Feb-26  | 05 53 | +17 28 | 1.469 | 0.782 | 111E  | Ori   | 11.6 | 67  | 32   |
| 2023-Mar-03  | 06 03 | +13 04 | 1.501 | 0.854 | 108E  | Ori   | 12.1 | 63  | 36   |

### Comet Magnitude Formula (from ALPO and COBS data)

 $m1 = 6.2 + 5 \log d + 35.6 \log r$ 



The "Asteroid Terrestrial-Impact Last Alert System" (ATLAS) search program found C/2022 U2 (ATLAS) at 19th magnitude on 2022 October 25 at a far northern declination of +69 deg. C/2022 U2 (ATLAS) is a dynamically old long-period comet last at perihelion ~800 years ago.

After a rapid bout of brightening, C/2022 U2 peaked around magnitude 9.7 in late January. This was around the time of its perihelion on 2023 January 14 at 1.33 au and closest approach to Earth on January 28 at 0.56 au.

Multiple visual observers monitored the comet in January and found it to possess a diffuse (DC = 1-2.5) coma up to 8' in diameter.

After spending the last month as a northern circumpolar object, U2 is heading south in February. As a result, it will remain well placed high in the evening sky for northern observers as it moves through Perseus (Feb 1-4), Auriga (4-16), Taurus (16-24), Orion (24-25), Taurus (25-26), Orion (26-28) and southern hemisphere observers will be able to pick it up early in the month. If the comet fades as rapidly as it brightens, then it may fade from magnitude 9.6 to ~12.0 by the end of the month. If it fades slower than it brightened, it may run brighter than the above prediction.

C/2022 U2 provides a few nice photo opportunities in February:

- Feb 06 C/2022 E3 (ZTF) and C/2022 U2 (ATLAS) are within ~20' of each other
- Feb 11-12 C/2022 U2 (ATLAS) passes close to the Flaming Star Nebula (IC 405), bright emission nebula IC 410, and 7<sup>th</sup> mag open star cluster NGC 1893
- Feb 16-17 C/2022 U2 (ATLAS) moves along the western edge of the large 40,000-year old supernova remnant Simeis 147. Simeis 147, also known as the Spaghetti Nebula, has a few cometary connections. It was discovered by Grigory Shajn, the discoverer of C/1925 F1 (Shajn-Comas Solá). In 1949, his wife, Pelageya F. Shajn, was the discoverer of 61P/Shajn-Schaldach. On 1986 November 1, William Sorrells was imaging Simeis 147 when he discovered long period comet C/1986 V1 (Sorrells) at 12<sup>th</sup> magnitude. Sorrells would eventually peak at magnitude 8.5-9.0.



Figure 6 – Tenho Tuomi imaged C/2022 U2 (ATLAS) on 2023 January 3 with a 0.3-m f/5 newtoniain. The composite consists of 18x60s color exposures.

# 96P/Machholz



Which comet was the brightest in January? Most folks would say C/2022 E3 (ZTF) and they would be correct for comets visible from Earth. If you were in space and equipped with a coronagraph to block out the Sun, you would have seen 96P/Machholz only a few degrees from the Sun and shining at magnitude 0 to 2. Luckily, we have a few such instruments always pointing at the Sun on the SOHO and STEREO-A spacecraft.

With a small perihelion distance of 0.116 au, 96P is never visually observable from the ground at perihelion. Though it may have been observed by imaging extraordinaire Nicolas Lefaudeux at perihelion (see his image posted at <u>Spaceweather.com</u>).

Between January 29 and February 2, 96P was visible in the SOHO LASCO C3 field-of-view and for a shorter period in the STEREO-A COR field-of-view. In the past, a number of faint secondaries were detected at previous perihelia. This time at least 4 secondaries have been detected (see <u>Karl Battams' Twitter post from Jan 30</u>, quick

note, Karl's Twitter channel is definitely a go to for all things comets, especially those very close to the Sun in SOHO and STEREO data). My own quick analysis of the SOHO C3 images found 3 secondaries. It is currently unknown whether these secondaries are surviving from perihelion to perihelion or new. None have been observed by ground-based telescopes when 96P is much further from the Sun.

With 96P now past its January 31 perihelion and exiting the SOHO C3 FOV, we'll need to wait a few weeks before the it comes within view of Earth-based observers. Northerners will get the first shot at 96P as it rises above the eastern morning horizon before the start of astronomical twilight by the middle of February though it should have faded to about 8-9<sup>th</sup> magnitude by then and will be fighting a bright Moon. Southern hemisphere observers will need to wait till late February when the comet will be even fainter at 11-12<sup>th</sup> magnitude.

96P was discovered in 1986 by former ALPO Comets Section Coordinator Donald Machholz. It was one of Dan's 12 visual comet discoveries. 96P/Machholz is an interesting comet. Its composition is depleted in both carbon and cyanogen, being one of only two comets showing this trait, the other being another visual discovery, long-period comet C/1988 Y1 (Yanaka). While some have surmised that this suggests an interstellar origin (i.e., not from our Solar System), it could just mean that 96P and Yanaka formed in a different region of the early Solar System from the bulk of the other comets, or have become depleted due to repeated close approaches to the Sun.

96P is also a part of a much larger group of comets, asteroids, and meteor showers. It appears that 96P, near-Earth asteroid 2033 EH1 (which may have been observed as a comet in 1490), the Kracht and Marsden group of small sunskirting SOHO comets, and the Quadrantid, Southern delta-Aquariid, and Daytime Arietid meteor showers are all related. 96P and its brethren may have been breaking up for thousands of years which may be a common occurrence, especially for objects that routinely get extremely close to the Sun.



Figure 7 –96P/Machholz passes through perihelion only a few degrees and 0.11 au from the Sun on January 31. Images were taken by the LASCO C3 instrument on the SOHO spacecraft. The upper left image is a co-added processed image C3 image showing 2 small secondary nuclei on January 31 at ~01:00 UT. Credit: ESA/NASA/SOHO/LASCO.

# **Comets Between Magnitude 10 and 12**

# 29P/Schwassmann-Wachmann

Discovered 1927 November 15 by Arnold Schwassmann and Arno Arthur Wachmann at the Hamburg Observatory in Bergedorf, Germany

Centaur comet with orbital period of ~14.9 years

Orbit (from Minor Planet Center, MPEC 2023-B154)

|    | 29P/Schwassmanr | n-Wachman | n             |             |             |
|----|-----------------|-----------|---------------|-------------|-------------|
| Ер | och 2023 Feb. 2 | 25.0 TT = | JDT 2460000.5 |             |             |
| Т  | 2019 Apr. 22.08 | 8411 TT   |               |             | Rudenko     |
| q  | 5.7776656       |           | (2000.0)      | P           | Q           |
| n  | 0.06626537      | Peri.     | 51.08587      | +0.99049654 | -0.06693879 |
| а  | 6.0479982       | Node      | 312.39746     | -0.00102451 | +0.86995714 |
| е  | 0.0446979       | Incl.     | 9.36345       | +0.13753380 | +0.48856297 |
| P  | 14 9            |           |               |             |             |

From 15331 observations 2018 June 18-2023 Jan. 26, mean residual 0".6.

### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| 29P/Schwassmann-Wachmann |       |        |       |       |       |       |       |     |     |  |  |
|--------------------------|-------|--------|-------|-------|-------|-------|-------|-----|-----|--|--|
|                          |       |        |       |       |       |       |       |     |     |  |  |
| Date                     | R.A.  | Decl.  | r     | d     | Elong | Const | Mag   | 40N | 40S |  |  |
| 2023-Feb-01              | 06 22 | +29 06 | 6.067 | 5.252 | 142E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Feb-06              | 06 20 | +29 01 | 6.069 | 5.304 | 137E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Feb-11              | 06 19 | +28 54 | 6.070 | 5.362 | 132E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Feb-16              | 06 17 | +28 48 | 6.072 | 5.425 | 127E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Feb-21              | 06 17 | +28 41 | 6.073 | 5.493 | 121E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Feb-26              | 06 16 | +28 35 | 6.075 | 5.565 | 116E  | Aur   | 11-13 | 79  | 21  |  |  |
| 2023-Mar-03              | 06 16 | +28 28 | 6.077 | 5.639 | 111E  | Aur   | 11-13 | 78  | 21  |  |  |

### Comet Magnitude Formula

None, due to frequent outbursts.

Recent Magnitude Measurements Contributed to the ALPO Comets Section

| Recent Mag | nitude Measurements i: | ICQ format:      |        |         |             |                                  |
|------------|------------------------|------------------|--------|---------|-------------|----------------------------------|
| Comet Des  | YYYY MM DD.DD Ma       | SC APER FL POW   | COMA   | TAIL    | ICQ CODE    | Observer Name                    |
|            | (UT)                   | Т                | Dia DC | LENG PA |             |                                  |
| 29         | 2023 01 22.86 S 11.    | ) TK 20.3T10 77  | 3.5 1/ |         | ICQ XX GON0 | 5 Juan Jose Gonzalez Suarez      |
| 29         | 2023 01 18.78 S 11.    | 2 TI 29.8L 4 108 | 2 1    |         | ICQ XX HAR1 | l Christian Harder               |
| 29         | 2023 01 12.97 M 12.    | ' AQ 30.0L 5 101 | 1 5    |         | ICQ XX DESO | l Jose Guilherme de Souza Aguiar |
| 29         | 2023 01 11.78 S 10.    | 8 TI 25.2L 4 92  | 2.5 1  |         | ICQ XX HAR1 | l Christian Harder               |
| 29         | 2023 01 03.84 S 12.    | TK 32.0L 5 144   | 7      |         | ICQ XX PILO | l Uwe Pilz                       |
| 29         | 2023 01 03.26 S 11.    | TK 20.3T10 100   | 3 1/   |         | ICQ XX GON0 | 5 Juan Jose Gonzalez Suarez      |
|            |                        |                  |        |         |             |                                  |

29P/Schwassmann-Wachmann (formerly S-W 1) was discovered photographically on 1927 November 15 by the German observing team of Arnold Schwassmann and Arno Arthur Wachmann. The Schwassmann-Wachmann duo discovered 4 comets together, three short-period comets (29P/Schwassmann-Wachmann, 31P/Schwassmann-Wachmann, and 73P/Schwassmann-Wachmann) and a long-period comet shared with American visual observer extraordinaire Leslie Peltier [C/1930 D1 (Peltier-Schwassmann-Wachmann)].

29P is an enigmatic comet. Its nucleus is one of the largest known for an active comet with a recent study using Spitzer infrared data placing its size at  $64.6 \pm 6.2$  km. Combining the Spitzer diameter with an assumed cometary nucleus albedo of 0.04 yields an absolute magnitude of ~10.1. If 29P were to be completely inactive, its nucleus would still be currently observable at a magnitude of ~18.0. The large size of 29P's nucleus was recently confirmed during an occultation visible across the southwest USA on December 19 when two chords were observed consistent with a nuclear size of ~60 km.

29P experiences outbursts multiple times per year with the largest resulting in a peak brightness of 10<sup>th</sup> magnitude though the majority of outbursts are much fainter. The constant outbursts are especially odd since the

comet's orbit lies just outside the orbit of Jupiter and is nearly circular (e=0.04), meaning the comet does not experience large variations in solar heating like most comets. Richard Miles (Director of the British Astronomical Society's Asteroids and Remote Planets Section) has published a series of papers on 29P and its outbursts and found that as many as 6 active areas are producing outbursts on a nucleus with a rotation period of  $\sim$ 57-58 days.

Back in September, October, and November of 2021, a number of large outbursts were observed resulting in 29P reaching 10<sup>th</sup> magnitude, which is about as bright as it ever gets. Recently two large outbursts were detected on November 22 and 27 with another small to moderate outbursts on December 26, January 12, 19 and 29. As a result, 29P is once again a nice visual object for large aperture visual observers. J. J. Gonzalez, Jose Guilherme de Souza Aguiar, Christian Harder, and Uwe Pilz observed 29P multiple times in January and found the comet mainly between magnitude 10.8 and 12.7. The large scatter in estimated brightness likely being due to the comet's large diffuse coma from the recent outbursts.

If you observe 29P, please consider contributing to two pro-am programs spearheading the effort to better understand this amazing object: the British Astronomical Society's (BAA) Mission 29P monitoring program coordinated by Richard Miles. (<u>https://britastro.org/node/18562</u> & <u>https://britastro.org/node/25120</u>) and the University of Maryland's 29P Observation campaign (<u>https://wirtanen.astro.umd.edu/29P/29P\_obs.shtml</u>).



Figure 8 - Denis Buczynski caught 29P on 2023 January 13 at the start of one its recent small outbursts.

# 81P/Wild

Discovered photographically on 1978 January 6 by Paul Wild at Zimmerwald, Switzerland

Orbit (from Minor Planet Center, MPEC 2023-B154)

| 8          | 1P/Wild                                                     |            |                |                   |                |  |  |  |
|------------|-------------------------------------------------------------|------------|----------------|-------------------|----------------|--|--|--|
| Еро        | ch 2023 Feb. 2                                              | 25.0 TT =  | JDT 2460000.   | . 5               |                |  |  |  |
| т 2        | 022 Dec. 15.61                                              | L721 TT    |                |                   | Rudenko        |  |  |  |
| q          | 1.5984259                                                   |            | (2000.0)       | P                 | Q              |  |  |  |
| n          | 0.15352235                                                  | Peri.      | 41.62770       | -0.99847760       | -0.03885658    |  |  |  |
| а          | 3.4542597                                                   | Node       | 136.09801      | +0.02219095       | -0.93275763    |  |  |  |
| е          | 0.5372595                                                   | Incl.      | 3.23648        | +0.05049791       | -0.35840392    |  |  |  |
| Ρ          | 6.42                                                        |            |                |                   |                |  |  |  |
| Fro        | m 2043 observa                                              | ations 201 | 14 Oct. 18-20  | )23 Jan. 26, mean | residual 0".7. |  |  |  |
|            | Nongravitational parameters $A1 = +0.04$ , $A2 = -0.0361$ . |            |                |                   |                |  |  |  |
|            |                                                             |            |                |                   |                |  |  |  |
| <b>D</b> 1 | •• / •                                                      | 1 11 0 11  | 1.177 1.11 1 0 |                   |                |  |  |  |

### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| 81P/Wild    |       |        |       |       |       |       |      | Max<br>(d | El<br>eg) |
|-------------|-------|--------|-------|-------|-------|-------|------|-----------|-----------|
| Date        | R.A.  | Decl.  | r     | d     | Elong | Const | Mag  | 40N       | 40S       |
| 2023-Feb-01 | 15 53 | -17 10 | 1.666 | 1.686 | 71M   | Lib   | 10.3 | 29        | 36        |
| 2023-Feb-06 | 16 05 | -17 38 | 1.680 | 1.661 | 73M   | Sco   | 10.4 | 29        | 39        |
| 2023-Feb-11 | 16 16 | -18 01 | 1.696 | 1.635 | 76M   | Sco   | 10.4 | 28        | 43        |
| 2023-Feb-16 | 16 27 | -18 20 | 1.713 | 1.609 | 78M   | Oph   | 10.5 | 28        | 46        |
| 2023-Feb-21 | 16 38 | -18 36 | 1.730 | 1.582 | 81M   | Oph   | 10.5 | 28        | 49        |
| 2023-Feb-26 | 16 48 | -18 47 | 1.749 | 1.556 | 83M   | Oph   | 10.6 | 28        | 53        |
| 2023-Mar-03 | 16 58 | -18 55 | 1.769 | 1.529 | 86M   | Oph   | 10.7 | 28        | 56        |

### Comet Magnitude Formula (from ALPO and COBS data)

 $m1 = 4.3 + 5 \log d + 22.0 \log r$ 





Paul Wild discovered 81P/Wild (formerly Wild 2) on photographic plates obtained on 1978 January 6 taken with the 0.4-m Schmidt telescope at Zimmerwald, Switzerland. 81P is best known as the target of the Stardust mission which not only obtained close-up imaging in 2004 but also collected a sample of cometary particles and returned them to Earth in 2006. Perihelion was on 2022 December 15 at 1.60 au when the comet was also a distant 1.94 au from Earth. 2023 will see the comet move towards a close approach to Earth on 2023 May 18 at 1.22 au.

81P is a morning object in Libra (Feb 1-4), Scorpius (4-13), and Ophiuchus (13-28). It was observed visually in January by Juan Jose Gonzalez Suarez and Jose Guilherme de Souza Aguiar at magnitude 11.2-11.7 (aperture corrected mag of 10.9-11.0). 81P should fade slightly in February from around magnitude 10.3 to 10.6 though the January observations suggest it may be ~0.5 magnitudes fainter than the prediction above.

# C/2019 L3 (ATLAS)

Discovered 2019 June 10 by the ATLAS survey with one of their 0.5-m f/2 Schmidt

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2019 I<br>Epoch 2023 E<br>T 2022 Jan.<br>q 3.554419<br>z -0.000575<br>+/-0.000000<br>e 1.002044<br>From 5908 ob<br>1/a(orig) =                                           | L3 (ATLAS<br>Feb. 25.0<br>9.64934<br>0<br>53 P<br>01 N<br>49 I<br>oservatio<br>+0.00003                                              | )<br>TT = JD1<br>TT<br>(200<br>eri. 171<br>ode 290<br>ncl. 48<br>ns 2019 0<br>9 AU**-1,                                              | T 2460000.5<br>00.0)<br>1.61734 -<br>0.77988 -<br>3.35090 -<br>June 10-2023<br>, 1/a(fut) =                                                                                                 | P<br>-0.2604076<br>-0.8368401<br>-0.4815458<br>Jan. 26,<br>-0.000717                                                                                                   | 53 -<br>7 -<br>44 -<br>mean re<br>7 AU**-                  | Rudenk<br>Q<br>-0.666<br>+0.205<br>-0.716<br>esidua<br>1.              | o<br>41985<br>10083<br>81115<br>1 0".4.       |                                                     |                   |            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------|-----------------------------------------------------|-------------------|------------|
| Ephemerides (p                                                                                                                                                             | roduced wit                                                                                                                          | th Seiichi Y                                                                                                                         | oshida's Comet                                                                                                                                                                              | s for Window                                                                                                                                                           | vs progra                                                  | <u>um)</u>                                                             |                                               |                                                     |                   |            |
| C/2019 L3 (ATLAS) Max El (deg)                                                                                                                                             |                                                                                                                                      |                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                        |                                                            |                                                                        |                                               |                                                     |                   |            |
| Date<br>2023-Feb-01<br>2023-Feb-06<br>2023-Feb-11<br>2023-Feb-21<br>2023-Feb-26<br>2023-Mar-03<br>Comet Magnitu<br>m1 = 2.5 +<br>m1 = -4.9 +<br>m1 = 2.3 +<br>where "t" is | R.A.<br>09 37<br>09 33<br>09 30<br>09 26<br>09 22<br>09 19<br>09 16<br><b>de Formula</b><br>5 log d<br>5 log d<br>5 log d<br>5 log d | Decl.<br>-34 28<br>-34 47<br>-35 01<br>-35 10<br>-35 14<br>-35 09<br>.and Lighton<br>+ 12.1 10<br>+ 21.7 10<br>+ 8.0 10<br>particles | r d<br>4.935 4.27<br>4.964 4.28<br>4.993 4.29<br>5.022 4.31<br>5.052 4.33<br>5.081 4.36<br>5.111 4.39<br>urve (from ALP<br>og r [Until 7<br>og r [Between<br>og r [Since 7<br>"d" is Comet- | Elong<br>75 127M<br>82 129M<br>93 130E<br>10 131E<br>83 132E<br>51 132E<br>95 131E<br>O and COBS<br>1550 days<br>1550 days<br>1550 days<br>1550 days<br>1560 arth dist | Const<br>Ant<br>Ant<br>Pyx<br>Pyx<br>Pyx<br>Pyx<br>S data) | Mag<br>11.0<br>11.1<br>11.1<br>11.1<br>11.1<br>11.2<br>days]<br>au, an | 40N<br>15<br>15<br>15<br>15<br>15<br>15<br>15 | 40s<br>85<br>85<br>85<br>85<br>85<br>85<br>85<br>85 | -Sun distar       | nce in au  |
| C/2019 L3 (ATLAS)                                                                                                                                                          |                                                                                                                                      |                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                                                                        |                                                            |                                                                        |                                               |                                                     |                   |            |
| Recent Magnitu<br>Recent Magnit<br>Comet Des YYY<br>2019L3 202                                                                                                             | tude Measure<br>tude Measure<br>(UT)<br>3 01 13.02                                                                                   | ements Con<br>urements<br>Mag Si<br>M 11.7 A                                                                                         | tributed to the A<br>in ICQ format<br>C APER FL POW<br>T<br>2 30.0L 5 101                                                                                                                   | LPO Comet:<br>COMA T<br>Dia DC I<br>1 3                                                                                                                                | S Section                                                  | ICQ COI                                                                | DE Observ<br>DESO1 Jo                         | y I<br>ver Nam<br>ose Gui                           | e<br>lherme de Sc | uza Aguiar |

C/2019 L3 (ATLAS) just keeps hanging on. We are over a year past its 2022 January 9 perihelion which occurred at 3.55 au from the Sun. At that time the comet reached a peak magnitude of ~8.5 to 9.0. Before perihelion, L3 experienced a rapid rate of brightening. Since perihelion, it has faded a slow though normal rate of 8.0 log r. That combined with the comet's large perihelion distance is the reason for its slow apparent fading.

Jose Guilherme de Souza Aguiar found L3 visually on January 13 at magnitude 11.7 (aperture corrected to 11.3) with a slightly condensed (DC = 3) coma with a small diameter of 1'. This month, the comet is visible from both hemispheres though low in the south for northerners as it moves through the southern constellation of Antilia (Feb 1-15) and Pyxis (15-28) near opposition.

# C/2019 U5 (PANSTARRS)

Discovered 2019 October 22 with the Pan-STARRS1 1.8-m on Haleakala

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2019 U5 (PANSTARRS)                                                    |          |               |                   |                |  |  |  |  |  |
|--------------------------------------------------------------------------|----------|---------------|-------------------|----------------|--|--|--|--|--|
| Epoch 2023 Feb. 25.0 TT = JDT 2460000.5                                  |          |               |                   |                |  |  |  |  |  |
| T 2023 Mar. 29.849                                                       | 927 TT   |               |                   | Rudenko        |  |  |  |  |  |
| q 3.6241910                                                              |          | (2000.0)      | P                 | Q              |  |  |  |  |  |
| z -0.0004129                                                             | Peri.    | 181.49717     | -0.99907961       | +0.00774350    |  |  |  |  |  |
| +/-0.000003                                                              | Node     | 2.63726       | -0.02311546       | +0.73134215    |  |  |  |  |  |
| e 1.0014963                                                              | Incl.    | 113.52062     | -0.03613326       | -0.68196678    |  |  |  |  |  |
| From 3084 observat                                                       | cions 20 | 19 Oct. 11-20 | )23 Jan. 26, mean | residual 0".4. |  |  |  |  |  |
| $1/a(orig) = +0.000083 AU^{*}-1, 1/a(fut) = -0.000098 AU^{*}-1.$         |          |               |                   |                |  |  |  |  |  |
| Ephemerides (produced with Seiichi Yoshida's Comets for Windows program) |          |               |                   |                |  |  |  |  |  |

| C/2019 U5 (PANSTARRS) |       |        |       |       |       |       |      | Max | El  |
|-----------------------|-------|--------|-------|-------|-------|-------|------|-----|-----|
|                       |       |        |       |       |       |       |      | (d  | eg) |
| Date                  | R.A.  | Decl.  | r     | d     | Elong | Const | Mag  | 40N | 40S |
| 2023-Feb-01           | 13 34 | +01 16 | 3.660 | 3.208 | 109M  | Vir   | 11.6 | 51  | 44  |
| 2023-Feb-06           | 13 29 | +00 57 | 3.654 | 3.115 | 115M  | Vir   | 11.5 | 51  | 47  |
| 2023-Feb-11           | 13 23 | +00 38 | 3.649 | 3.027 | 122M  | Vir   | 11.4 | 50  | 49  |
| 2023-Feb-16           | 13 17 | +00 21 | 3.644 | 2.944 | 128M  | Vir   | 11.4 | 50  | 50  |
| 2023-Feb-21           | 13 09 | +00 05 | 3.639 | 2.869 | 135M  | Vir   | 11.3 | 50  | 50  |
| 2023-Feb-26           | 13 01 | -00 10 | 3.636 | 2.802 | 142M  | Vir   | 11.2 | 50  | 50  |
| 2023-Mar-03           | 12 52 | -00 24 | 3.632 | 2.744 | 149M  | Vir   | 11.2 | 49  | 51  |

Comet Magnitude Formula and Lightcurve (from ALPO and COBS data)



where "t" is date of perihelion, "d" is Comet-Earth distance in au, and "r" is Comet-Sun distance in au



C/2019 U5 (PANSTARRS) was discovered by the Pan-STARRS survey on 2019 October 22. At that time the comet was 21st magnitude and 10.4 au from the Sun, or a little further than the orbit of Saturn. U5 will be closer when it arrives at perihelion next month on March 29 though still at a distant 3.62 au. Around that time, the comet may reach its brightest though only a few tenths of magnitude brighter than it currently is.

In January, both Juan Jose Gonzalez Suarez and Jose Guilherme de Souza Aguiar observed U5. They found the comet between magnitude 11.2 and 11.8 (aperture corrected to magnitude 10.9 to 11.4) with a coma between 1' and 4' in diameter and rather diffuse with a DC of 2-3. This month C/2019 U5 is a morning object approaching opposition in Virgo. It should continue to slowly brighten as its distance to the Sun and Earth decreases.

# C/2020 K1 (PANSTARRS)

Discovered 2020 May 17 by the Pan-STARRS survey with their Pan-STARRS2 1.8-m reflector at Haleakala on Maui Dynamically old long period comet with ~174,000-year orbital period

### Orbit (from Minor Planet Center, MPEC 2023-B154)

| C/2020 K1 (PAN                                                                                 | ISTARRS) |               |                   |                |  |  |  |  |
|------------------------------------------------------------------------------------------------|----------|---------------|-------------------|----------------|--|--|--|--|
| Epoch 2023 Feb. 25                                                                             | 5.0 TT = | JDT 2460000.  | .5                |                |  |  |  |  |
| T 2023 May 9.0776                                                                              | 55 TT    |               |                   | Rudenko        |  |  |  |  |
| q 3.0732766                                                                                    |          | (2000.0)      | P                 | Q              |  |  |  |  |
| z -0.000033                                                                                    | Peri.    | 213.98424     | +0.06618017       | -0.03767449    |  |  |  |  |
| +/-0.000006                                                                                    | Node     | 94.35493      | -0.53600734       | +0.84152069    |  |  |  |  |
| e 1.0000101                                                                                    | Incl.    | 89.66942      | -0.84161530       | -0.53890960    |  |  |  |  |
| From 2772 observat                                                                             | ions 202 | 20 Apr. 17-20 | )22 Nov. 27, mean | residual 0".4. |  |  |  |  |
| $1/a(\text{orig}) = +0.000247 \text{ AU}^{*}-1, 1/a(\text{fut}) = +0.000978 \text{ AU}^{*}-1.$ |          |               |                   |                |  |  |  |  |

#### Ephemerides (produced with Seiichi Yoshida's Comets for Windows program)

| C/2020 K1 (PANSTARRS) |       |        |       |       |       |       |      | Max | El  |
|-----------------------|-------|--------|-------|-------|-------|-------|------|-----|-----|
|                       |       |        |       |       |       |       |      | (d  | eg) |
| Date                  | R.A.  | Decl.  | r     | d     | Elong | Const | Mag  | 40N | 40S |
| 2023-Feb-01           | 18 59 | -30 25 | 3.217 | 4.038 | 29M   | Sgr   | 11.6 | 0   | 10  |
| 2023-Feb-06           | 19 05 | -31 19 | 3.203 | 3.979 | 33M   | Sgr   | 11.5 | 0   | 14  |
| 2023-Feb-11           | 19 11 | -32 14 | 3.190 | 3.915 | 37M   | Sgr   | 11.5 | 0   | 18  |
| 2023-Feb-16           | 19 17 | -33 13 | 3.177 | 3.848 | 41M   | Sgr   | 11.4 | 0   | 23  |
| 2023-Feb-21           | 19 23 | -34 13 | 3.165 | 3.777 | 45M   | Sgr   | 11.4 | 0   | 27  |
| 2023-Feb-26           | 19 29 | -35 17 | 3.154 | 3.704 | 49M   | Sgr   | 11.3 | 0   | 32  |
| 2023-Mar-03           | 19 35 | -36 24 | 3.143 | 3.627 | 53M   | Sgr   | 11.3 | 0   | 36  |

Comet Magnitude Formula and Lightcurve (from ALPO and COBS data)

 $m1 = 4.5 + 5 \log d + 8.0 \log r$ 





C/2020 K1 (PANSTARRS) was discovered by Pan-STARRS on 2020 May 17. At that time the comet was 20th magnitude and 9.5 au from the Sun. Like C/2019 U5, we are still a few months out from a distant perihelion, in K1's case, on 2023 May 9 at 3.07 au. It should peak at magnitude 10-11 in May and June of this year.

Not much new to report about this one. The last observation was reported to COBS by Thomas Lehmann on 2022 November 12 when he imaged the comet at magnitude 13.4 with a 1.4' coma and 1.3' long tail. The last observation in the Minor Planet Center archives was from November 27 with Ken-ichi Kadota found the comet at magnitude 13.2. Visual observations in the preceding months found the comet at least a magnitude brighter.

The reason for the recent lack of observations is due to the comet being in solar conjunction. This month sees K1 finally pull far enough from the Sun to be observed, at least from the southern hemisphere, in Sagittarius around magnitude  $\sim$ 11.5.